Minimizer of the Reconstruction Error for multi-class document categorization
نویسندگان
چکیده
منابع مشابه
Minimizer of the Reconstruction Error for multi-class document categorization
In the present article we introduce and validate an approach for single-label multi-class document categorization based on text content features. The introduced approach uses the statistical property of Principal Component Analysis, which minimizes the reconstruction error of the training documents used to compute a low-rank category transformation matrix. Such matrix transforms the original se...
متن کاملMulti-class Text Categorization with Error Correcting Codes
Automatic text categorization has become a vital topic in many applications. Imagine for example the automatic classi cation of Internet pages for a search engine database. The traditional 1-of-n output coding for classi cation scheme needs resources increasing linearly with the number of classes. A di erent solution uses an error correcting code, increasing in length with O(log2(n)) only. In t...
متن کاملLearning Distributed Document Representations for Multi-Label Document Categorization
Multi-label Document Categorization, the task of automatically assigning a text document into one or more categories has various real-world applications such as categorizing news articles, tagging Web pages, maintaining medical patient records and organizing digital libraries among many others. Statistical Machine Learning approaches to document categorization have focused on multi-label learni...
متن کاملthe effects of error correction methods on pronunciation accuracy
هدف از انجام این تحقیق مشخص کردن موثرترین متد اصلاح خطا بر روی دقت آهنگ و تاکید تلفظ کلمه در زبان انگلیسی بود. این تحقیق با پیاده کردن چهار متد ارائه اصلاح خطا در چهار گروه، سه گروه آزمایشی و یک گروه تحت کنترل، انجام شد که گروه های فوق الذکر شامل دانشجویان سطح بالای متوسط کتاب اول passages بودند. گروه اول شامل 15، دوم 14، سوم 15 و آخرین 16 دانشجو بودند. دوره مربوطه به مدت 10 هفته ادامه یافت و د...
15 صفحه اولCompact Design of ECOC for Multi-class Object Categorization
In this paper, we propose a Compact design of Error Correcting Output Codes (ECOC) in terms of the number of dichotomizers. Evolutionary computation is used for tuning the parameters of the classifiers and looking for the best Compact ECOC code configuration. The results over several challenging multi-class Computer Vision problems show comparable and even better results than stateof-the-art EC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems with Applications
سال: 2014
ISSN: 0957-4174
DOI: 10.1016/j.eswa.2013.08.016